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Abstract— In this paper, closed form expressions of linear
MIMO system responses are presented. These expressions make
use of matrix polynomial formulations of e

tA. They depend
on the eigenvalues of A, the characteristic polynomial of A,
as well as the partial fraction expansion coefficients of the
corresponding unity numerator transfer function. The general
partial fraction coefficients may be calculated using a compu-
tationally efficient recursive formula that has been derived in
the context of SISO system responses. The final expressions
are presented in a form that enhances the understanding of
linear systems as such and emphasizes efficient computational
implementation and the resulting time complexity. Finally, a
closed form solution of the Lypunov equation, the Gramian, is
presented.

Keywords: Matrix Exponential, Partial Fraction Expan-
sion Coefficients, Linear Continuous Time MIMO System
Responses, Lyapunov equation, Gramian

I. INTRODUCTION

There exists an extensive literature within the fields of
ordinary differential equations, difference equations, matrix
theory and Laplace transforms on closed formed expressions.
The majority of such results, however, predates the computer
era, and is not presented in a form that has onus on
efficient algorithmic implementations. This fact, somewhat
surprisingly, is still reflected in modern textbooks, e.g., in
control theory, in the area of signals and systems as well as
mathematics. In these textbooks, the corresponding types of
results are presented in a restrictive setting, with little or no
attention to how they could be implemented in general algo-
rithms. Computer algorithms that have been developed over
recent decades, e.g., within control theory and mathematics,
on the other hand, are often based on general approaches
to numerical solutions of ordinary differential equations and
linear equations that do not make specific use of the structure
that lies in the closed form expressions.

Thus naturally, much attention has been given to numerical
methods during the past decades with the rapid development
of fast computers. Those generally provide approximate so-
lutions which are often applicable to large systems, see e.g.,
[1] regarding the computation of matrix exponentials and
[2] and [3] regarding the solutions of Lyapunov equations.
Despite the effectiveness and advantages of such numerical
methods, closed form time domain solutions nevertheless
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provide direct, easy and accurate computation for small
to midsize systems. Further, closed form solutions open a
window of opportunities definitely worth exploring, gener-
ally in the control area for the design of controllers and
model reduction, both in their own right for small to midsize
systems and by combining them with numerical methods for
large systems.

Closed form continuous time transfer function expressions
(SISO case) were derived in [4] and extended to the case of
repeated eigenvalues in [5]. The closed form lends itself well
to computation and analysis of transfer function responses
and opens up many new interesting applications, e.g., solving
for optimal zero locations by minimizing transient responses
[4]; tracking a given reference step response in [6], and
addressing the model reduction problem by L2/H2 mini-
mization in [7]. The closed form expressions were further
used in the direct computation of coefficients for PID and
generalized PID controllers in [8] and [9].

It is of interest to extend the results obtained for SISO
systems to the MIMO case. Naturally, the results obtained
for SISO systems can be used directly for MIMO sys-
tems in the transfer function matrix form. In the case of
MIMO systems in the state space form, the computation
of the matrix exponential etA becomes of interest. Many
different approaches have been proposed to compute the
matrix exponential based, e.g. on eigenvector expansions
of the matrix A, rational approximations to the exponential
function and exact polynomial representations making use
of the Cayley Hamilton theorem, see e.g. [10], [11] and
references therein. It should be noted that for large A
matrices, the computation of the matrix exponential itself
is not computationally attractive and may be plagued by
roundoff error[11]. However, in the case of MIMO responses,
the central computational task is to calculate the vector etAb
for a given vector b and a given matrix A. For this task,
the computation can be arranged into a recursive procedure
that lends itself to efficient implementation. These procedures
can be derived in many different ways, making e.g. use
of properties of (generalized) Vandermonde matrices and
their inverses, interpolation polynomials and inverse Laplace
transforms. Here we choose to emphasize the connection
with the Laplace transforms, highlighting the potential bene-
fits of the procedure by applying it to the task of calculating
Gramians and solving the standard Lyapunov equation. This
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approach can e.g. be contrasted with that used in Matlab’s
lyap which transforms the corresponding system matrices
to the Schur form, computes the solution of the resulting
triangular system and transforms the solution back[12].

While some of the basic ideas presented in this paper
are certainly not new, cf e.g., [13] and [14], care has been
taken to formulate them in a framework that can be readily
implemented in a computational environment like Matlab,
in an efficient manner. The analogy with the SISO case is
also emphasized, since these forms have already proved to
lend themselves nicely to a number of control applications
in that case. It should further be emphasized that the main
motivation behind this work is to provide another tool in
the linear systems toolbox, to be used along with methods
that have already been developed, e.g. numerical approaches,
indeed these may support each other in further development.

In the next section the computational framework is first
introduced. Then a proof of the general matrix polynomial
form for etA that is the basis of our approach is presented.
This is followed by results of applying this form to the
problem of calculating general linear MIMO system re-
sponses, as well as closed form Gramians and solutions to the
Lyapunov equation. Finally, numerical examples illustrating
these approaches is presented.

II. A MATRIX POLYNOMIAL EXPRESSION OF etA

Consider the general state space representation of MIMO
systems in the minimal form given by

ẋ = Ax + Bu
y = Cx + Du

(1)

where AǫRn×n, BǫRn×p, CǫRr×n and DǫRr×p. Assume
the matrix A has the characteristic equation

det(sI−A) =
n

∑

i=0

ais
i = (s−λ1)

d1(s−λ2)
d2 · · · (s−λν)dν ,

(2)
where an = 1 and λi, i = 1, . . . , ν are the eigenvalues of
A. The corresponding Jordan matrix is given by

J =













J1 0 · · · 0

0 J2
. . .

...
...

. . .
. . . 0

0 · · · 0 Jν













(3)

with the diagonal blocks

Ji =



















λi 1 · · · · · · 0

0 λi 1
...

0 0 λi 1
...

...
. . .

. . .
. . . 1

0 · · · 0 0 λi



















, (4)

each a di × di matrix.

Now, consider a basic rational function with a unity
numerator:

Fb(s) =
1

sn + an−1sn−1 + · · · + a0

=
1

(s − λ1)d1(s − λ2)d2 · · · (s − λν)dν

=

ν
∑

i=1

di
∑

j=1

κij

(s − λi)
j
, (5)

where κij are the basic partial fraction expansion coefficients

κ =
[

κ11 · · · κ1d1 · · · κν1 · · · κνdν

]T
. (6)

The term basic response refers here to the response of a
transfer function containing only poles and a unity numer-
ator, i.e., the basic impulse response yb(t) is the solution
of

y
(n)
b (t)+an−1y

(n−1)
b (t)+ . . .+a0yb(t) = δ(t), t > 0.

(7)
The basic response is then naturally given by

yb(t) =

ν
∑

i=1

di
∑

j=1

κij

t(di−j)

(di − j)!
eλit = κTE(t), t > 0.

(8)
The unity numerator partial fraction coefficients κ are easily
computed recursively as in [5], i.e.,

κij =























∏ν
q=1,q 6=i

1
(λi−λq)dq

, j = di

∑di−j
q=1

κi(j+q)(−1)q

di−j
×

∑ν
p=1,p6=i

dp

(λi−λp)q , j = di − 1, . . . , 1.

(9)

Finally, define the corresponding linearly independent ba-
sis functions, contained in the n × 1 vector,

E(t) =











E1(t)
E2(t)

...
Eν(t)











(10)

where

Ei(t) =













eλit

d
dλi

eλit

...
1

(di−1)!
ddi−1

dλ
di−1

i

eλit













=











eλit

teλit

...
t(di−1)

(di−1)!e
λit











. (11)

Theorem 1: We can express etA in the matrix polynomial
form

etA =

n−1
∑

i=0





i
∑

j=0

an−i+jA
j



 (Jn−i−1κ)T E(t) (12)

=

n−1
∑

i=0

(

n−i
∑

j=1

an−j+1(J
n−j−iκ)TE(t))Ai, (13)

=

n−1
∑

i=0

(γT
i E(t))Ai, (14)

=

n−1
∑

i=0

αi(t)A
i, (15)
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where γi, i = 0, 1, . . . , n − 1, are n × 1 vectors, which can
be computed recursively as

γn−1 = κ, γn−k−1 = Jγn−k+an−kκ, k = 1, 2, . . . , n−1.
(16)

Note that αi(t) = γT
i E(t) in (14) and (15) is a scalar function

of t, in accordance with the Cayley Hamilton theorem.
Proof: The matrix exponential can be written as the

inverse Laplace transform of

etA = L−1

{

1

det(sI − A)
Adj(sI − A)

}

. (17)

We can write the adjoint matrix as

Adj(sI − A) = sn−1I + sn−2(A + an−1I)
+sn−3(A2 + an−1A + an−2I)
+... + (An−1 + an−1A

n−2 + ... + a1I)
= An−1 + An−2(s + an−1)

+An−3(s2 + an−1s + an−2)
+... + I(sn−1 + an−1s

n−2 + ... + a1).
(18)

We have for a unity numerator transfer function that

L−1

{

1

det(sI − A)

}

= yb(t) = κTE(t). (19)

It is easily seen that

y
(k)
b (t) = (Jkκ)TE(t). (20)

Similarly,

L−1

{

sj

det(sI − A)
I

}

= y
(k)
b (t)I = I(Jjκ)T E(t), j ≥ 0.

(21)
Then (12) immediately follows using the first half of (18).
Using the second half of (18), we obtain (13) leading directly
to (14) and (15) where

γi =

n−i
∑

j=1

an−j+1(J
n−j−iκ), i = 0, 1, . . . , n − 1, (22)

are n × 1 vectors, which can be computed recursively as
given by (16). Q.e.d.

Remark 1: The expression (14) can also be derived from
the fact that etA can be expressed as p(A; t) where p(λ; t)
denotes the unique interpolation polynomial of degree n− 1
that interpolates etλ, viewed as a function of λ with t being
constant, at the points λ1, . . . , λν in the sense that

dj

dλj
p(λ; t)

∣

∣

∣

∣

λ=λi

=
dj

dλj
etλ

∣

∣

∣

∣

λ=λi

j = 0, 1, . . . , di − 1.

(23)
Thus, if we express this interpolation polynomial in the form

p(λ; t) =

n−1
∑

i=0

ci(t)λ
i, (24)

then (23) implies that, see e.g., [15]

V T c(t) = E(t) (25)

where V is the confluent Vandermonde matrix given by

V =
[

V1 V2 · · · Vν

]

(26)

and

Vi =





























1 0 · · · 0

(λi) 1
. . .

...
...

...
. . . 0

...
... 1

...
...

...
(λi)

m−1 Cm−1
1 (λi)

m−2 · · · Cm−1
di−1(λi)

m−di

(λi)
m Cm

1 (λi)
m−1 · · · Cm

di−1(λi)
m−di+1





























,

where Cp
q =

(

p
q

)

and

c(t) =
[

c0(t) · · · cn−1(t)
]T

. (27)

Hence

ci(t) = vT
i E(t), (28)

where vi denotes the i-th column of V −1. We finally have
that

vn−1 = κ, vn−k−1 = Jvn−k+an−kκ, k = 1, 2, . . . , n−1,
(29)

i.e., γi = vi and ci(t) = γT
i E(t) (cf. [16] which also includes

an alternative derivation of the formulation (14)-(16)). By
introducting other equivalent formulations for p(λ; t) such
as the Lagrange form or the Newton form, we can derive
other alternative formulations for etA. The expression derived
for the Newton form[17] is in many respects comparable to
the expression (14) and has the advantage that it does not
rely on explicit knowledge of the coefficients ai, whereas
the Lagrange form is less attractive from a computational
viewpoint.

Remark 2: The evaluation of the n × n matrices Ai, i =
2, . . . , n − 1 requires O(n4) operations and is as such not
computationally attractive, see [10]. However, if we are to
evaluate

etAb =
∑n−1

i=0 (Aib)(γT
i E(t)) (30)

for an n-vector b, and we evaluate the vectors Aib recur-
sively, then the number of operations reduces to O(n3).
Furthermore, if we are to evaluate etAb repeatedly for
different values of t, we can first calculate the matrix

Q =

n−1
∑

i=0

(Aib)(γi)
T (31)

in O(n3) operations after which each evaluation of etAb only
requires O(n2) operations, in addition to the evaluation of
E(t).

Remark 3: Let yb(t) denote the "basic response" function
whose transform Fb(s) is given by (5). Hence it follows from
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(20) and (16) that:














γT
0

γT
1
...

γT
n−2

γT
n−1















E(t) =













a1 · · · an−1 1
... · · 0

an−1 · ·
...

1 0 · · · 0













Yb(t) (32)

where

Yb(t) =

















yb(t)

y
′

b(t)
...

y
(n−2)
b (t)

y
(n−1)
b (t)

















(33)

Remark 4: We have similarily the following expressions:

dk

dtk etA =
∑n−1

i=0 ((Jkγi)
TE(t))Ai (34)

and provided none of the eigenvalues are zero
∫

· · ·
∫

etA(dt)k =
∑n−1

i=0 ((J−kγi)
T E(t))Ai. (35)

Remark 5: Expressions (12)-(16) can be extended to any
matrix function f(At) that can be defined in terms of a
Taylor series, and hence by the Cayley-Hamilton theorem
in terms of a matrix polynomial of degree n − 1. The only
change in the expressions is E(t) that now becomes the
vector











f(λt)
d
dt

f(λt)
...

dn−1

dtn−1 f(λt)











. (36)

III. MIMO SYSTEM RESPONSES

Corollary 1: Assume that the input u(t) is a piecewise
continuous function. Then the MIMO system response can
be expressed as

y(t) =
∑n−1

i=0 (γT
i E(t))(CAix(0))

+
∑p

j=1

∑n−1
i=0 γT

i

∫ t

0 uj(τ)E(t − τ)dτ(CAiB.j)

+Du(t)

.

(37)
Proof:

x(t) = etAx(0) +
∫ t

0
eA(t−τ)Bu(τ)dτ

=
∑n−1

i=0 (γT
i E(t))(Aix(0))

+
∫ t

0

∑n−1
i=0 γT

i E(t − τ)AiBu(τ)dτ

=
∑n−1

i=0 (γT
i E(t))(Aix(0))

+
∑p

j=1

∑n−1
i=0 γT

i

∫ t

0
uj(τ)E(t − τ)dτ(AiB.j)

.

(38)
Q.e.d.

Remark 6: If we wish to calculate y(t) repeatedly for
different values of t, we can as before first calculate the
matrices

Q0 =

n−1
∑

i=0

(CAix(0))γT
i (39)

and

Qj =

n−1
∑

i=0

(CAiB.j)γ
T
i , j = 1, 2, . . . , p (40)

with O(n4) operations for each matrix and subsequently
calculate x(t) for each t with O(pn2) operations in addition
to having to evaluate E(t) and

∫ t

0
uj(τ)E(t − τ)dτ , j =

1, 2, . . . p.
Remark 7: The impulse response of a MIMO system is

given by
yI(t) = CetAB + Dδ(t), (41)

which noting that the term γT
i E(t) in (14) is a scalar, can be

expressed as

yI(t) =

n−1
∑

i=0

(γT
i E(t))CAiB + Dδ(t). (42)

Note that in this case the evaluation of the r × p ma-
trix CetAB will require O(min(r, p)n3) operations if we
calculate the Markov parameters CAiB recursively in the
appropriate order.

Remark 8: This expression can be contrasted with that
obtained by making use of the closed form expressions for
SISO systems[5]. In particular, it can be show that the scalar
impulse response corresponding to the k-th input and the l-th
output can be expressed as

yI,k,l(t) =

n−1
∑

i=0

Ck·A
iB·lγ

T
i E(t) + Dklδ(t) (43)

= Ck·B̂lK
T E(t) + Dklδ(t), (44)

where Ck· denotes the k-th row vector of C and B·l the l-th
column vector of B. K, is a n × n matrix,

K =
[

κ Jκ · · · Jn−1κ
]

(45)

which can be computed recursively from κ in O(n2) opera-
tions and the column vectors of the matrix

B̂l =
[

β0,l β1,l · · · βn−1,l

]

, (46)

can be computed recursively from the column vectors of B
for k = 1, 2, . . . , n − 1:

βn−1,l = B·l, βn−k−1,l = Aβn−k,l + an−kB·l. (47)

With this formulation the main computational task is that
of calculating the matrices B̂j , j = 1, 2, . . . , p from (47)
which requires O(pn3) operations. Thus, the two alternative
expressions (42) and (44) are comparable from a computa-
tional point of view. Note that (44) correspond to the impulse
response of a SISO system given by[5]

yI(t) = (KB)TE(t), t > 0, (48)

where the numerator coefficients

B =
[

b0 b1 · · · bn−1

]T
(49)

are given by

B = Ck·B̂l =















Ck·(A
n−1 + an−1An−2 + · · · + a2A + a1I)B

·l

...
Ck·(A

2 + an−1A + an−2I)B
·l

Ck·(A + an−1I)B
·l

Ck·B·l















(50)
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IV. SOLVING THE LYAPUNOV EQUATION

Consider the Lyapunov equation

AP + PAH + BBH = 0 (51)

and its solution given by the input Gramian.
Corollary 2: The input Gramian

P =

∫ ∞

0

etABBHetAH

dt (52)

can be expressed as

P =

n−1
∑

i=0

n−1
∑

j=0

(

γT
i

∫ ∞

0

E(t)E(t)Hdtγ̄j

)

AiBBT
(

AT
)j

.

(53)
Proof: We have from Theorem 1 that

etAB =
n−1
∑

i=0

(

γT
i E(t)

)

AiB (54)

and the result follows directly.
Q.e.d.

Remark 9: A dual result may be derived for the output
Gramian and subsequently the Hankel singular values may
be computed.

Remark 10: Calculating the matrices AiB for i =
0, 1, . . . , n − 1 recursively, the evaluation of P according
to (53) requires O(pn3) operations.

Remark 11: The (ρ, σ)–th element of the (k, j)–
th subblock of

∫ ∞

0
E(t)E(t)Hdt, i.e., of the matrix

∫ ∞

0
Ek(t)Ej(t)

Hdt is given by
(ρ+σ−2

ρ−1 )
(−λk−λ̄j)ρ+σ−1 .

Alternatively, we can make use of (32) and express

P =

n−1
∑

i=0

n−1
∑

j=0

(

ãT
i+1

∫ ∞

0

Yb(t)Yb(t)
T dtãj+1

)

AiBBT
(

AT
)j

,

(55)
where ãi denotes the i-th column vector of the matrix on
the right hand side of (32). Here we note that the matrix
∫ ∞

0 Yb(t)Yb(t)
T dt will have the following plaid like structure

[18]

A =





















A1 0 −A2 0 A3 · · ·

0 A2 0 −A3 0
−A2 0 A3 0 −A4

0 −A3 0 A4 0

A3 0 −A4 0
. . .

...
. . . An





















, (56)

where

Ai =
∫ ∞

0

(

y
(i−1)
b (t)

)2

dt

= (J i−1κ)T
∫ ∞

0
E(t)EH(t)dtJ i−1κ.

(57)

This follows in turn from the fact that

y
(i)
b (0) = 0, i = 0, 1, . . . , n − 2, y

(n−1)
b (0) = 1

limt→∞ y
(i)
b (t) = 0, i = 0, 1, . . . , n − 1.

(58)
The coefficients Ai, i = 1, . . . , n can alternatively be
expressed directly in terms of ai, i = 0, 1, . . . , n, but we
omit the details of that here.

V. EXAMPLES

A. System properties

We will use a well known MIMO model of a jet (see
e.g. Matlab’s Control Toolbox help) in order to illustrate
the application of some of the formulae presented above.
The inputs to the system, u1 and u2, symbolize the rudder
and aileron deflections, respectively, in degrees. The outputs
y1 and y2 represent the yaw rate and bank angle. The
corresponding system matrices are given by

A =









−0.0558 −0.9968 0.0802 0.0415
0.5980 −0.1150 −0.0318 0
−3.0500 0.3880 −0.4650 0

0 0.0805 1.0000 0









, (59)

B =









0.0073 0
−0.4750 0.0077
0.1530 0.1430

0 0









, (60)

C =

[

0 1 0 0
0 0 0 1

]

, D =

[

0 0
0 0

]

. (61)

B. Impulse response

We start by finding the closed form expression of the
system’s inpulse response, i.e. compute yI(t) using (42).
Then the basic response partial fraction coefficients are
computed from (9)

κ =
[

−0.2388 + 0.4553i −0.2388 − 0.4553i −1.5301 2.0078
]T

,
(62)

and the corresponding E(t) vector is given by

E(t) =









e(−0.0329+0.9467i)t

e(−0.0329−0.9467i)t

e−0.5627t

e−0.0073t









. (63)

Now the γ matrix can be computed recursively as in (16)

γ·3 =

[

−0.2388 + 0.4553i
−0.2388 − 0.4553i

−1.5301
2.0078

]

, γ·2 =

[

−0.5750 + 0.0484i
−0.5750 − 0.0484i

−0.1119
1.2619

]

,

γ·1 =







−0.2511 − 0.1184i
−0.2511 + 0.1184i

−1.3736
1.8759






, γ·0 =







−0.0018 − 0.0009i
−0.0018 + 0.0009i

−0.0100
1.0136






.

(64)

Now we have all the elements needed to calculate the
impulse response as in (42), resulting in

yI(1,1) = 2 · e−0.0329t [ 0.0147 · sin(0.9467t) − 0.1691 · cos(0.9467t) ]

−0.0254 · e−0.5627∗t
− 0.1114 · e−0.0073∗t,

yI(1,2) = −2 · e−0.0329t [ 0.0020 · sin(0.9467t) + 0.0021 · cos(0.9467t) ]

+0.0029 · e−0.5627t + 0.0090 · e−0.0073t,

yI(2,1) = 2 · e−0.0329t [ 0.4404 · cos(0.9467t) + 0.6217 · sin(0.9467t) ]

+1.8722 · e−0.5627t
− 2.7530 · e−0.0073t,

yI(2,2) = 2 · e−0.0329t [ 0.0127 · sin(0.9467t) − 0.0032 · cos(0.9467t) ]

−0.2150 · e−0.5627t + 0.2213 · e−0.0073t.
(65)
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C. Input Gramian

In order to compute directly the output Gramian, the
solution to the Lyapunov matrix equation, we first compute

∫ ∞

0

E(t)E(t)Hdt =









15.1812 0.0184 + 0.5275i 0.4761 + 0.7568i 0.0448 + 1.0545i

0.0184 − 0.5275i 15.1812 0.4761 − 0.7568i 0.0448 − 1.0545i

0.4761 − 0.7568i 0.4761 + 0.7568i 0.8887 1.7546
0.0448 − 1.0545i 0.0448 + 1.0545i 1.7546 68.7005









(66)

utilizing Remark 11. Now it is straightforward to compute the
solution to the Lyapunov equation by using (53), calculating
AiB recursively, resulting in

P =









1.8663 −0.0066 −2.9371 8.0258
−0.0066 1.7427 −2.8782 18.3346
−2.9371 −2.8782 16.9103 −1.4759
8.0258 18.3346 −1.4759 524.8139









.

(67)

We also get the same result using (55)-(57). The output
Gramian Q can be computed in an analogous manner and
hence the Hankel singular values can be computed based on
closed form solutions for P and Q.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, closed form expressions of linear MIMO
system responses were presented. For MIMO systems in the
state space form, the closed form expressions make use of
matrix polynomial formulations of etA and depend on the
eigenvalues of A and the characteristic polynomial of A as
well as the partial fraction coefficients of the corresponding
unity numerator transfer function. The general partial frac-
tion coefficients can be calculated using a computationally
efficient recursive formula that has been derived in the
context of SISO system responses. The final expressions are
presented in a form that emphasizes efficient computational
implementation and the resulting time complexity. The re-
sults are valid for real as well as complex eigenvalues, the
eigenvalues may be repeated.

Alternatively, the results obtained for SISO systems can
be used directly for MIMO systems by making use of the
transfer function matrix form. We also present closed form
expressions based on this approach. The two alternative
forms turn out to be comparable from a computational point
of view.

In addition to the closed form expressions in MIMO
systems responses, a closed form solution to the Lyaponov
equation, i.e., the Gramian, was presented. Subsequently, the
Hankel singular values may be computed. Paralleling the
SISO case, the impulse response is linear in the numerator
coefficients of the transfer function matrix and may open
up numerous possibilities in optimization of the numerator
coefficients or the element zeros of MIMO systems. Such op-
timization can possibly be applied towards model reduction
as well as control of MIMO systems.

The emphasis in this work has been on the derivation
of computationally efficient formulations of closed form

expressions. The short term motivation has simply been to
provide another tool in the linear systems toolbox to be used
along with methods that have already been developed based
on numerical approaches. The aim is to develop criteria based
on numerical efficiency and stability to aid in the choice of
appropriate solution tools. It is finally to be hoped that such
expressions may enhance the understanding of linear systems
as such and provide new approaches to solving problems in
optimization and control as has proved to be the case with
SISO systems.
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